
 MAHA BARATHI ENGINEERING COLLEGE
 NH-79, SALEM-CHENNAI HIGHWAY, A.VASUDEVANUR, CHINNASALEM (TK), KALLAKURICHI (DT) 606 201.

 Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

 Accredited by NAAC and Recognized under section 2(f) & 12(B) status of UGC, New Delhi

 www.mbec.ac.in│Ph: 04151-256333, 257333 │ E-mail: mbec123@gmail.com

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

EC3561-VLSI LABORATORY

III Year/ V Semester B.E ECE

Regulation 2021

(As Per Anna University, Chennai syllabus)

 Prepared By Verified By Approved By

 Staff I/C (HoD/ECE) (Principal)

http://www.mbec.ac.in/
mailto:mbec123@gmail.com

MAHA BARATHI ENGINEERING COLLEGE
 NH-79, Salem-Chennai Highway, A.Vasudevanur, Chinnasalem TK, Kallakurichi Dt – 606 201.

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai
 Accredited by NAAC and Recognized under section 2(f) & 12(B) status of UGC, New Delhi.

 www.mbec.ac.in | 04151-256333, 257333 | mbec123@gmail.com

Certified that this is a bonafide record of workdone by

Selvan/Selvi………………………………………………………………. ………..
Reg.No.………………………….of……Fifth……………………………Semester

…………………….Electronics and Communication Engineering…………Branch

of …B.E…..Degree Examination in the subject…EC3561-VLSI Laboratory……

………………………………………………………

Staff Incharge Head of the Department

Date:

Submitted for Anna University Practical Examination conducted on…………………

Internal Examiner External Examiner

Bonafide Certificate

http://www.mbec.ac.in/
mailto:mbec123@gmail.com

CONTENT

S.

No.

Date Name of the Experiment Page

No.

Marks

Awarded

Signature

of the Staff

Incharge

1
Combinational and Sequential Circuits

2
8- Bit Adder and Multiplier

3
Universal Shift Register

4
Random Access Memory

5
Finite state machine

6
3-Bit Synchronous Up/Down Counter

7
4-Bit Asynchronous Up/Down Counter

8 CMOS Nand, Nor Gate and Flipflop
9

Synchronous Counter
10 Differential Amplifier
11 Design And Simulate The Analysis Of Source

Followers
12

CMOS Inverting Amplifier

Expt No: 1

Date: COMBINATIONAL AND SEQUENTIAL CIRCUITS

 Aim:

To Design and Simulate basic gates, half & full adder,half & full Subtractor, multiplexer, decoder,

comparator and flip-flopsusing Verilog HDL and also implement in FPGA Kit.

APPARATUS REQUIRED:

 PC with Windows XP.

 XILINX software.

Theory:

A logic gate is a physical model of a boolean function that is, it performs a logical operation on

one or more logic inputs and produces a single logic output. Logic gates are primarily

implemented electronically using diodes or transistors, but can also be constructed using

electromagnetic relays (relay logic), fluidic logic, pneumatic logic, optics, molecules, or even

mechanicalelements.With amplification, logic gates can be cascaded in the same way that

Boolean functions can be composed, allowing the construction of a physical model of all of

Boolean logic, and therefore, all of the algorithms and mathematics that can be described with

Boolean logicSynthesis is the process of constructing a gate level netlist from a register-transfer

Level models of the circuit described in Verilog HDL ,VHDL or mixed language designs.

The netlist files contain both logical design data and constraints .

XILINX SYNTHESIS TOOL enable us to study

1. Utilization of LUTs & Slices

2. I/O Buffers assignment

3. RTL schematic in gate level

4. Time delay between i/Os and path

.

http://en.wikipedia.org/wiki/Logical_operation
http://en.wikipedia.org/wiki/Electronics
http://en.wikipedia.org/wiki/Diode
http://en.wikipedia.org/wiki/Transistor
http://en.wikipedia.org/wiki/Relay
http://en.wikipedia.org/wiki/Relay_logic
http://en.wikipedia.org/wiki/Fluidic_logic
http://en.wikipedia.org/wiki/Pneumatics#Pneumatic_logic
http://en.wikipedia.org/wiki/Optics
http://en.wikipedia.org/wiki/Molecular_logic_gate
http://en.wikipedia.org/wiki/Analytical_engine
http://en.wikipedia.org/wiki/Boolean_logic

PROCEDURE:

1. Start the Xilinx ISE by using start→ program file → Xilinx ISE (8.1i) → Project navigator

2. File → New Project

3. Enter the project name and location then click next

4. select the Device and other category and click next twice and finish

5. Click on the symbol of FPGA device and then right click → click on new source

6. Select the Verilog Module and give the file name → click next and define ports → click

next and finish

7. Writing the behavioral verilog code in verilog Editor

8. Run the Check syntax → process window → synthesize → double click check syntax and

remove errors, if present , with proper syntax & coding.

9. synthesis your design, from the source window select, Synthesis/Implementation from the

window Now double click the synthesis →XSt

10. After the HDL synthesiss phase of the synthesis process,you can display a schematic

representation of your synthesized source file.This schematic shows a representation of the

pre-optimized design in terms of generic symbols,such as adders,multipliers,counters,Ann

gates and OR gates → double click View RTL schematic

11. Double click the schematic to internal view

12. Double click outside the schematic to move one-level back

13. This Schematic Shows a representation of the design in terms of logic elements optimized to

the target device. For example,in terms of LUTs(Look Up Table),carry logic,I/O buffers and

other technology-specific components

→Double click View technology Schematic

14.Double click the Schematic to inner view

15.Double click the LUT to inner View.This is gate lenel view of LUT ,if you want see Truth

Table and K-Map for your design just click the respective tabs

16.After finishing the synthesis,you can view number of Slices,LUT(Look Up Table),I/Os are

taken by your design in Device using Design Summary

AND Gate:

PROGRAM:

AND Gate:

moduleAndgate(i1, i2, out);

input i1;

input i2;

output out;

 and (out,i1,i2);

endmodule

Truth table:

 AND Gate

 --

 Input1 Input2 Output

 --

 0 0 0

 0 1 0

 1 0 0

 1 1 1

OUTPUT WAVE

OR Gate:

Program:

moduleOrgate(i1, i2, out);

input i1;

input i2;

output out;

 or(out,i1,i2);

endmodule

Truth table:

 OR Gate

 --

 Input1 Input2 Output

 --

 0 0 0

 0 1 1

 1 0 1

 1 1 1

 --

Output Wave

NAND Gate:

Program

moduleNandgate(i1, i2, out);

input i1;

input i2;

output out;

 nand(out,i1,i2);

endmodule

Truth table:

NAND Gate

--

Input1 Input2 Output

--

0 0 1

0 1 1

1 0 1

1 1 0

--

Output Wave:

NOR Gate:

Program

moduleNorgate(i1, i2, out);

input i1;

input i2;

output out;

 nor(out,i1,i2);

endmodule

Truth table:

 NOR Gate

 --

 Input1 Input2 Output

 --

 0 0 1

 0 1 0

 1 0 0

 1 1 0

 --

Output wave

XOR Gate:

Program

moduleXorgate(i1, i2, out);

input i1;

input i2;

output out;

 xor(out,i1,i2);

endmodule

Truth table:

 XOR Gate

 --

 Input1 Input2 Output

 --

 0 0 0

 0 1 1

 1 0 1

 1 1 0

Output Wave

XNOR Gate:

Program

moduleXnorgate(i1, i2, out);

input i1;

input i2;

output out;

 xnor(out,i1,i2);

endmodule

Truth table:

 XNOR Gate

 --

 Input1 Input2 Output

 --

 0 0 1

 0 1 0

 1 0 0

 1 1 1

 --

Output Wave:

Not Gate:

Program

moduleNotgate(in, out);

input in;

output out;

 not(out,in);

endmodule

Truth table:

 NOT Gate

 Input Output

 0 1

 1 0

Output Wave

Buffer:

Program

module Buffer(in, out);

input in;

output out;

 buf(out,in);

endmodule

Truth table :

 BUFFER

 Input Output

 0 0

 1 1

Output Wave:

Half Adder:

Program :

moduleHalfAddr(sum, c_out, i1, i2);

output sum;

outputc_out;

input i1;

input i2;

 xor(sum,i1,i2);

 and(c_out,i1,i2);

endmodule

Truth table:

 Half Adder

 --

 Input1 Input2 Carry Sum

 --

 0 0 0 0

 0 1 0 1

 1 0 0 1

 1 1 1 0

 --

Output Wave:

Full Adder:

Program:

moduleFullAddr(i1, i2, c_in, c_out, sum);

input i1;

input i2;

inputc_in;

outputc_out;

output sum;

 wire s1,c1,c2;

 xor n1(s1,i1,i2);

 and n2(c1,i1,i2);

 xor n3(sum,s1,c_in);

 and n4(c2,s1,c_in);

 or n5(c_out,c1,c2);

endmodule

Truth Table:

 Full Adder

 --

 i1 i2 C_in C_out Sum

 --

 0 0 0 0 0

 0 0 1 0 1

 0 1 0 0 1

 0 1 1 1 0

 1 0 0 0 1

 1 0 1 1 0

 1 1 0 1 0

 1 1 1 1 1

Output Wave:

Halfsubtractor:

Program:

moduleHalfSub(i0, i1, bor, dif);

input i0;

input i1;

outputbor;

outputdif;

 wire i0n;

 not(i0n,i0);

 xor(dif,i0,i1);

 and(bor,i0n,i1);

endmodule

Truth Table:

 Half Subtractor

 --

 Input1 Input2 Borrow Difference

 0 0 0 0

 0 1 1 1

 1 0 0 1

 1 1 0 0

 --

Output Wave:

FULL SUBTRACTOR:

Program:

moduleFullSub(b_in, i1, i0, b_out, dif);

inputb_in;

input i1;

input i0;

outputb_out;

outputdif;

 assign dif= i0^i1^b_in;

assignb_out= ((~i0&i1)|((~i0|i1)&b_in)))

endmodule

Truth Table:

Full Subtractor

 --

 A B C Difference bout

 --

 0 0 0 0 0

 0 0 1 1 1

 0 1 0 1 0

 0 1 1 0 1

 1 0 0 1 0

 1 0 1 0 0

 1 1 0 0 0

 1 1 1 1 1

Output Wave:

4:1 MUX:

 TRUTH TABLE:

INPUT OUTPUT

S(0) S(1) Y

0 0 X(0)

0 1 X(1)

1 0 X(2)

1 1 X(3)

Program for 4:1 Multiplexer:

module mux(y,a,b,c,d,s0,s1);

input a,b,c,d,s0,s1;

output y;

reg y;

always @ (a or b or c or d or s0 or s1)

begin

case({s0,s1})

2’b00:y=a;

2’b01:y=b;

2’b10:y=c;

2’b11:y=d;

end case

end

endmoudle

OUTPUT:

DECODER:

TRUTH TABLE:

INPUTS OUTPUTS

a0 a1 d0 d1 d2 d3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

Program for 2 to 4 decoder:

moduledec(y0,y1,y2,y3,a,b);

inputa,b;

output y0,y1,y2,y3;

reg y0,y1,y2,y3;

always @ (a or b)

begin

case({a,b})

2’b00:{y0,y1,y2,y3}=4’b1000;

2’b01:{y0,y1,y2,y3}=4’b0100;

2’b10:{y0,y1,y2,y3}=4’b0010;

2’b11:{y0,y1,y2,y3}=4’b0001;

default:$ display (“invalid”);

end case

end

endmodule

OUTPUT:

2-bit Comparator:

Program for 2-bit Comparator:

module comp(agtb,altb,aeqb,a0,a1,b0,b1);

input a0,a1,b0,b1;

outputagtb,altb,aeqb;

assignagtb=(a0&~b1&~b0)|(~a1&b1)|(a1&a0&~b0);

assignaltb=(~a1&~a0&b0)|(~a0&b1&b0)|(~a1&b1);

assignaeqb=(a0~^b0)&(a1~^b1);

end module

OUTPUT:

Sequential Circuits FLIP-FLOPS
LOGIC DIAGRAM of D-FLIP FLOP:

TRUTH TABLE:

Q(t) D Q(t+1)

0 0 0

0 1 1

1 0 0

1 1 1

PROGRAM:

moduledff (d, clk, q, qbar);

input d;input clk;

output q;

outputqbar;

 regq,qbar;

 initial q=0;

 always @(posedgeclk)

 begin

 q=d;

 qbar=~d;

 end

D

Q

C
P

Q

endmodule

RTL - SCHEMATIC:

SIMULATED OUTPUT:

LOGIC DIAGRAM of T-FLIP FLOP :

TRUTH TABLE:

Q(t) T Q(t+1)

0 0 0

0 1 1

1 0 1

1 1 0

T
Q

C
P

Q

PROGRAM:

module TFF(q, clk, t);

output q;

inputclk;

input t;

 reg q;

 initial q=0;

 always@(posedgeclk)

begin

 q=q^t;

 end

endmodule

RTL - SCHEMATIC:

SIMULATED OUTPUT:

RESULT:

Thus the program of Basic Gates, half & full adder,half & full Subtractor, Multiplexer, Decoder,

Comparator and Flip-flops were designed and simulated using Verilog HDL and also implemented in

FPGA kit.

Expt No: 2

Date: 8- BIT ADDER AND MULTIPLIER

AIM:

To Design and Simulate an 8-Bit Adder and Multiplier using Verilog HDL and also

implement in FPGA Kit.

APPARATUS REQUIRED:

 PC,

 XILINX Software,

 Spartan 3E kit.

8- BITADDER

THEORY:

In electronics, an adder or summer is a digital circuit that performs addition of numbers. In

modern computers adders reside in the arithmetic logic unit (ALU) where other operations are

performed. Although adders can be constructed for many numerical representations, such as

Binary-coded decimal or excess-3, the most common adders operate on binary numbers. In cases

where two's complement or one's complement is being used to represent negative numbers, it is

trivial to modify an adder into an adder-subtractor. Other signed number representations require

a more complex adder. Synthesis is the process of constructing a gate level netlist from a

register-transfer Level models of the circuit described in Verilog HDL ,VHDL or mixed

language designs.Thenetlist files contain both logical design data and constraints the

XILINX Synthesis tool enable us to study

1. Utilization of LUTs & Slices

2. I/O Buffers assignment

3. RTL schematic in gate level

Time delay between i/Os and path

 PROCEDURE:

1. Start the Xilinx ISE by using start→ program file → Xilinx ISE → Project navigator

2. File → New Project

3. Enter the project name and location then click next

4. select the Device and other category and click next twice and finish

5. Click on the symbol of FPGA device and then right click → click on new source

6. Select the Verilog Module and give the file name → click next and define ports → click

next and finish

http://en.wikipedia.org/wiki/Digital_circuit
http://en.wikipedia.org/wiki/Addition
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Arithmetic_logic_unit
http://en.wikipedia.org/wiki/Binary-coded_decimal
http://en.wikipedia.org/wiki/Excess-3
http://en.wikipedia.org/wiki/Binary_numeral_system
http://en.wikipedia.org/wiki/Two%27s_complement
http://en.wikipedia.org/wiki/One%27s_complement
http://en.wikipedia.org/wiki/Adder-subtractor
http://en.wikipedia.org/wiki/Signed_number_representations

7. Writing the behavioral verilog code in verilog Editor

8. Run the Check syntax → process window → synthesize → double click check syntax and

remove errors, if present, with proper syntax & coding.

9. synthesis your design, from the source window select, Synthesis/Implementation from the

window Now double click the synthesis →XSt

10. After the HDL synthesis phase of the synthesis process, you can display a schematic

representation of your synthesized source file. This schematic shows a representation of

the pre-optimized design in terms of generic symbols, such as

adders,multipliers,counters,Ann gates and OR gates → double click View RTL

schematic.

11. Afterr Synthesis you assign the Pin Value for your design so, → double click the Assign

Package Pins

12. Enter the Pin value for your input and output signals. If you want see your Pin

assignment in FPGA zoom in Architecture View or Package View

13. You see the Pins in FPGA. Save file as XST Default click ok and close the window

14. Double Click Implementation Design

15. Right click the Generate Programming file→select properties and then select the start-up

options→change the clock into JTAG clock, then click apply and ok.

16. Double click the Generate Programming file.

17. Double click Configure Device→click finish →select the bit file and then click ok

18. Right click Xilinx Device→clickProgram→ok.

RTL-SCHEMATIC:

PROGRAM:

module adder(sum, cout, a, b, cin);

input cin;

input [7:0] a;

input [7:0] b;

output [7:0] sum;

output cout;

wire [8:0] tmp;

assigntmp = a + b + cin;

assign sum = tmp [7:0];

assigncout = tmp [8];

endmodule

OUTPUT:

8- BIT MULTIPLIER

THEORY:

A combinational multiplier is a good example of how simple logic functions (gates, half adders

and full adders) can be combined to construct a much more complex function. In particular, it is

possible to construct a 4x4 combinational multiplier from an array of AND gates, half-adders

and full-adders, taking what you have learned recently and extending it to a more complex

circuit. The purpose of this document is to introduce how a relatively complex arithmetic

function, such as binary multiplication, can be realized using simple logic building

blocks.Synthesis is the process of constructing a gate level netlist from a register-transfer Level

models of the circuit described in Verilog HDL ,VHDL or mixed language designs.Thenetlist

files contain both logical design data and constraints, XILINX Synthesis tool enable us to study,

1. Utilization of LUTs & Slices

2. I/O Buffers assignment

3. RTL schematic in gate level

4. Time delay between i/Os and path

PROGRAM:

modulemulti(y,a,b);

input [7:0]a;

input [7:0]b;

output [15:0]y;

assign y=a*b;

endmodule

OUTPUT:

RESULT:

Thus the Program of 8-Bit Adder and Multiplier were designed and simulated using Verilog

HDL and also implemented in FPGA Kit.

Expt No: 3

Date: UNIVERSAL SHIFT REGISTER

AIM:

To Design and Simulate aUniversal Shift Registerusing Verilog HDL and also implement in

FPGA Kit.

APPARATUS REQUIRED:

 PC,

 XILINX Software,

 Spartan 3E kit.

THEORY

A Universal shift register is a register which has both the right shift and left shift with parallel

load capabilities. Universal shift registers are used as memory elements in computers. A

Unidirectional shift register is capable of shifting in only one direction. A bidirectional shift

register is capable of shifting in both the directions. The Universal shift register is a combination

design of bidirectional shift register and a unidirectional shift register with parallel load

provision.A n-bit universal shift register consists of n flip-flops and n 4×1 multiplexers. All the n

multiplexers share the same select lines(S1 and S0)to select the mode in which the shift register

operates. The select inputs select the suitable input for the flip-flops.

Basic connections

1. The first input (zeroth pin of multiplexer) is connected to the output pin of the

corresponding flip-flop.

2. The second input (first pin of multiplexer) is connected to the output of the very-previous

flip flop which facilitates the right shift

3. The third input (second pin of multiplexer) is connected to the output of the very-next flip-

flop which facilitates the left shift.

4. The fourth input (third pin of multiplexer) is connected to the individual bits of the input

data which facilitates parallel loading.

The working of the Universal shift register depends on the inputs given to the select lines.

The register operations performed for the various inputs of select lines are as follows:

S1 S0 REGISTER OPERATION

0 0 No changes

0 1 Shift right

1 0 Shift left

1 1 Parallel load

 PROCEDURE:

1. Start the Xilinx ISE by using start→ program file → Xilinx ISE → Project navigator

2. File → New Project

3. Enter the project name and location then click next

4. select the Device and other category and click next twice and finish

5. Click on the symbol of FPGA device and then right click → click on new source

6. Select the Verilog Module and give the file name → click next and define ports → click

next and finish

7. Writing the behavioral verilog code in verilog Editor

8. Run the Check syntax → process window → synthesize → double click check syntax and

remove errors, if present, with proper syntax & coding.

9. synthesis your design, from the source window select, Synthesis/Implementation from the

window Now double click the synthesis →XSt

10. After the HDL synthesis phase of the synthesis process, you can display a schematic

representation of your synthesized source file. This schematic shows a representation of

the pre-optimized design in terms of generic symbols, such as adders, multipliers,

counters, Ann gates and OR gates → double click View RTL schematic.

11. Afterr Synthesis you assign the Pin Value for your design so, → double click the Assign

Package Pins

12. Enter the Pin value for your input and output signals. If you want see your Pin

assignment in FPGA zoom in Architecture View or Package View

13. You see the Pins in FPGA. Save file as XST Default click ok and close the window

14. Double Click Implementation Design

15. Right click the Generate Programming file→select properties and then select the start-up

options→change the clock into JTAG clock, then click apply and ok.

16. Double click the Generate Programming file.

17. Double click Configure Device→click finish →select the bit file and then click ok

18. Right click Xilinx Device→clickProgram→ok.

PROGRAM:

modulefffff(a,s,clk,p);

input [3:0]a;

input [1:0]s;

inputclk;

outputreg [3:0]p;

initial

p<=4'b0110;

always@(posedgeclk)

begin

case (s)

2'b00:

begin

p[3]<=p[3];

p[2]<=p[2];

p[1]<=p[1];

p[0]<=p[0];

end

2'b01:

begin

p[3]<=p[0];

p[2]<=p[3];

p[1]<=p[2];

p[0]<=p[1];

end

2'b10:

begin

p[0]<=p[3];

p[1]<=p[0];

p[2]<=p[1];

p[3]<=p[2];

end

2'b11:

begin

p[0]<=a[0];

p[1]<=a[1];

p[2]<=a[2];

p[3]<=a[3];

end

endcase

end

endmodule

OUTPUT:

RESULT:

Thus the Program of 4-Bit Universal Shift Registerwas designed and simulated using Verilog

HDL and also implemented in FPGA Kit.

Expt No: 4

Date: RANDOM ACCESS MEMORY

AIM:

To Design and Simulate a Random Access Memoryusing Verilog HDL and also implement

in FPGA Kit.

APPARATUS REQUIRED:

 PC,

 XILINX Software,

 Spartan 3E kit.

THEORY:

RAM (pronounced ramm) is an acronym for random access memory, a type of computer

memory that can be accessed randomly; that is, any byte of memory can be accessed without

touching the preceding bytes. RAM is found in servers, PCs, tablets, smartphones and other

devices, such as printers.There are two main types of RAM:

DRAM (Dynamic Random Access Memory)

SRAM (Static Random Access Memory)

DRAM (Dynamic Random Access Memory) – The term dynamic indicates that the memory

must be constantly refreshed or it will lose its contents. DRAM is typically used for the main

memory in computing devices. If a PC or smartphone is advertised as having 4-GB RAM or 16-

GB RAM, those numbers refer to the DRAM, or main memory, in the device.More specifically,

most of the DRAM used in modern systems is synchronous DRAM, or SDRAM. Manufacturers

also sometimes use the acronym DDR (or DDR2, DDR3, DDR4, etc.) to describe the type of

SDRAM used by a PC or server. DDR stands for double data rate, and it refers to how much data

the memory can transfer in one clock cycle.In general, the more RAM a device has, the faster it

will perform.

SRAM (Static Random Access Memory) – While DRAM is typically used for main memory,

today SRAM is more often used for system cache. SRAM is said to be static because it doesn't

need to be refreshed, unlike dynamic RAM, which needs to be refreshed thousands of times per

second. As a result, SRAM is faster than DRAM. However, both types of RAM are volatile,

meaning that they lose their contents when the power is turned off.

https://www.webopedia.com/TERM/A/acronym.html
https://www.webopedia.com/TERM/D/dynamic_RAM.html
https://www.webopedia.com/TERM/S/SRAM.html
https://www.webopedia.com/TERM/V/volatile_memory.html

The Difference between Memory, RAM and Storage:

The difference between memory and storage, in part because both can be measured in megabytes

(MB), gigabytes (GB) and terabytes (TB).In common usage, the term RAM is synonymous

with main memory. This is where a computing system stores data that it is actively

using. Storage systems, such as hard drives, network storage devices or cloud storage, are where

a system saves data that it will need to access later.Computing systems can retrieve data from

RAM very quickly, but when a device powers down, all the data that was in memory goes away.

Many people have had the experience of losing a document they were working on after an

unexpected power outage or system crash. In these cases, the data was lost because it was stored

in system memory, which is volatile.By contrast, storage is slower, but it can retain data when

the device is powered down. So, for example, if a document has been saved to a hard drive prior

to a power outage or system crash, the user will still be able to retrieve it when the system is

back up and running.Storage is usually less expensive than RAM on a per-gigabyte basis. As a

result, most PCs and smartphones have many times more gigabytes of storage than gigabytes of

RAM.

 PROCEDURE:

1. Start the Xilinx ISE by using start→ program file → Xilinx ISE → Project navigator

2. File → New Project

3. Enter the project name and location then click next

4. select the Device and other category and click next twice and finish

https://www.webopedia.com/TERM/M/Megabyte.html
https://www.webopedia.com/TERM/G/gigabyte.html
https://www.webopedia.com/TERM/T/terabyte.html
https://www.webopedia.com/TERM/M/main_memory.html
https://www.webopedia.com/TERM/M/mass_storage.html

5. Click on the symbol of FPGA device and then right click → click on new source

6. Select the Verilog Module and give the file name → click next and define ports → click

next and finish

7. Writing the behavioral verilog code in verilog Editor

8. Run the Check syntax → process window → synthesize → double click check syntax and

remove errors, if present, with proper syntax & coding.

9. synthesis your design, from the source window select, Synthesis/Implementation from the

window Now double click the synthesis →XSt

10. After the HDL synthesis phase of the synthesis process, you can display a schematic

representation of your synthesized source file. This schematic shows a representation of

the pre-optimized design in terms of generic symbols, such as adders, multipliers,

counters, Ann gates and OR gates → double click View RTL schematic.

11. Afterr Synthesis you assign the Pin Value for your design so, → double click the Assign

Package Pins

12. Enter the Pin value for your input and output signals. If you want see your Pin

assignment in FPGA zoom in Architecture View or Package View

13. You see the Pins in FPGA. Save file as XST Default click ok and close the window

14. Double Click Implementation Design

15. Right click the Generate Programming file→select properties and then select the start-up

options→change the clock into JTAG clock, then click apply and ok.

16. Double click the Generate Programming file.

17. Double click Configure Device→click finish →select the bit file and then click ok

18. Right click Xilinx Device→clickProgram→ok.

CIRCUIT DIAGRAM:

PROGRAM:

moduleramreadfirst(clk, en, we, addr, di, do);

inputclk;

input we;

input en;

input [4:0] addr;

input [3:0] di;

output [3:0] do;

reg [3:0] RAM [31:0];

reg [3:0] do;

always @(posedgeclk)

begin

if (en)

begin

if (we)

RAM[addr] <= di;

do<= RAM[addr];

end

end

endmodule

OUTPUT:

RESULT:

Thus the Program of Random Access Memorywas designed and simulated using Verilog HDL

and also implemented in FPGA Kit.

Expt No: 5

Date: FINITE STATE MACHINE

AIM:

To Design and Simulate a Finite State Machineusing Verilog HDL and also implement in

FPGA Kit.

APPARATUS REQUIRED:

 PC,

 XILINX Software,

 Spartan 3E kit.

THEORY:

Finite State Machines (FSM) are sequential circuit used in many digital systems to control the

behavior of systems and dataflow paths. Examples of FSM include control units and sequencers.

This lab introduces the concept of two types of FSMs, Mealy and Moore, and the modeling

styles to develop such machines.

A finite-state machine (FSM) or simply a state machine is used to design both computer

programs and sequential logic circuits. It is conceived as an abstract machine that can be in one

of a finite number of user-defined states. The machine is in only one state at a time; the state it is

in at any given time is called the current state. It can change from one state to another when

initiated by a triggering event or condition; this is called a transition. A particular FSM is defined

by a list of its states, and the triggering condition for each transition. The behavior of state

machines can be observed in many devices in modern society performing a predetermined

sequence of actions depending on a sequence of events with which they are presented. Simple

examples are vending machines which dispense products when the proper combination of coins

are deposited, elevators which drop riders off at upper floors before going down, traffic lights

which change sequence when cars are waiting, and combination locks which require the input of

combination numbers in the proper order. The state machines are modeled using two basic types

of sequential networks- Mealy and Moore. In a Mealy machine, the output depends on both the

present (current) state and the present (current) inputs. In Moore machine, the output depends

only on the present state. A general model of a Mealy sequential machine consists of a

combinatorial network, which generates the outputs and the next state, and a state register which

holds the present state as shown below. The state register is normally modeled as D flip-flops.

The state register must be sensitive to a clock edge. The other block(s) can be modeled either

using the always procedural block or a mixture of the always procedural block and dataflow

modeling statements; the always procedural block will have to be sensitive to all inputs being

read into the block and must have all output defined for every branch in order to model it as a

combinatorial block. The two blocks Mealy machine can be viewed as,

 PROCEDURE:

1. Start the Xilinx ISE by using start→ program file → Xilinx ISE → Project navigator

2. File → New Project

3. Enter the project name and location then click next

4. select the Device and other category and click next twice and finish

5. Click on the symbol of FPGA device and then right click → click on new source

6. Select the Verilog Module and give the file name → click next and define ports → click

next and finish

7. Writing the behavioral verilog code in verilog Editor

8. Run the Check syntax → process window → synthesize → double click check syntax and

remove errors, if present, with proper syntax & coding.

9. synthesis your design, from the source window select, Synthesis/Implementation from the

window Now double click the synthesis →XSt

10. After the HDL synthesis phase of the synthesis process, you can display a schematic

representation of your synthesized source file. This schematic shows a representation of

the pre-optimized design in terms of generic symbols, such as adders, multipliers,

counters, Ann gates and OR gates → double click View RTL schematic.

11. Afterr Synthesis you assign the Pin Value for your design so, → double click the Assign

Package Pins

12. Enter the Pin value for your input and output signals. If you want see your Pin

assignment in FPGA zoom in Architecture View or Package View

13. You see the Pins in FPGA. Save file as XST Default click ok and close the window

14. Double Click Implementation Design

15. Right click the Generate Programming file→select properties and then select the start-up

options→change the clock into JTAG clock, then click apply and ok.

16. Double click the Generate Programming file.

17. Double click Configure Device→click finish →select the bit file and then click ok

18. Right click Xilinx Device→clickProgram→ok.

PROGRAM:

modulefsm(clk, rst, x, y);

inputclk, rst, x;

output y;

reg [1:0] state;

reg y;

always @(posedgeclk, posedgerst)

begin

if(rst)

state<= 2'b00;

else

begin

case(state)

 2'b00:

begin

if(x) state <= 2'b01;

else state <= 2'b10;

end

 2'b01:

begin

if(x) state <= 2'b11;

else state <= 2'b10;

end

 2'b10:

begin

if(x) state <= 2'b01;

else state <= 2'b11;

end

 2'b11:

begin

if(x) state <= 2'b01;

else state <= 2'b10;

end

endcase

end

end

always @(posedgeclk, posedgerst)

begin

if(rst)

y <= 0;

else if(state == 2'b11)

y <= 1;

else y <= 0;

end

endmodule

 FINITE STATE MACHINEOUTPUT:

RESULT:

Thus the Program of Finite State Machinewas designed and simulated using Verilog HDL and

also implemented in FPGA Kit.

Expt No: 6 3-BIT SYNCHRONOUS UP/DOWN COUNTER

Date:

AIM:

To design and simulate 3-Bit Synchronous Up/Down Counter Using HDLand also
implement in FPGA Kit.

APPARATUS REQUIRED:

 PC

 Xilinx software

 FPGA(Spartan 3E) Kit

 PROCEDURE:

1. Start the Xilinx ISE by using start→ program file → Xilinx ISE → Project navigator

2. File → New Project

3. Enter the project name and location then click next

4. select the Device and other category and click next twice and finish

5. Click on the symbol of FPGA device and then right click → click on new source

6. Select the Verilog Module and give the file name → click next and define ports → click

next and finish

7. Writing the behavioral verilog code in verilog Editor

8. Run the Check syntax → process window → synthesize → double click check syntax and

remove errors, if present, with proper syntax & coding.

9. synthesis your design, from the source window select, Synthesis/Implementation from the

window Now double click the synthesis →XSt

10. After the HDL synthesis phase of the synthesis process, you can display a schematic

representation of your synthesized source file. This schematic shows a representation of

the pre-optimized design in terms of generic symbols, such as adders, multipliers,

counters, Ann gates and OR gates → double click View RTL schematic.

11. Afterr Synthesis you assign the Pin Value for your design so, → double click the Assign

Package Pins

12. Enter the Pin value for your input and output signals. If you want see your Pin

assignment in FPGA zoom in Architecture View or Package View

13. You see the Pins in FPGA. Save file as XST Default click ok and close the window

14. Double Click Implementation Design

15. Right click the Generate Programming file→select properties and then select the start-up

options→change the clock into JTAG clock, then click apply and ok.

16. Double click the Generate Programming file.

17. Double click Configure Device→click finish →select the bit file and then click ok

18. Right click Xilinx Device→clickProgram→ok.

Steps to design Synchronous 3 bit Up/Down Counter :

1. Decide the number and type of FF –
 Here we are performing 3 bit or mod-8 Up or Down counting, so 3 Flip Flops are required,

which can count up to 23-1 = 7.
 Here T Flip Flop is used.
2. Write excitation table of Flip Flop –

Excitation table of T FF

3. Decision for Mode control input M –
 When M=0 ,then the counter will perform up counting.
 When M=1 ,then the counter will perform down counting.
4. Draw the state transition diagram and circuit excitation table –

State transition diagram for 3 bit up/down counting.

5. Circuit excitation table –
The circuit excitation table represents the present states of the counting sequence and the next
states after the clock pulse is applied and input T of the flip-flops. By seeing the transition
between the present state and the next state, we can find the input values of 3 Flip Flops using
the Flip Flops excitation table. The table is designed according to the required counting
sequence.

Circuit excitation table

If there is a change in the output state of a flip flop (i.e. 0 to 1 or 1 to 0), then the corresponding
T value becomes 1 otherwise 0.

6. Find a simplified equation using k map –
Here we are finding the minimal Boolean expression for each Flip Flop input T using k map.

Simplified equation for K map

7. Create a circuit diagram –
The simplified expression for Flip Flops is used to design circuit diagrams. Here all the
connections are made according to simplified expressions for Flip Flops.

3 bit synchronous up/down counter.

Explanation :
Here -ve edge triggered clock pulse is used for toggling purpose.

Characteristics table of T FF

PROGRAM:

module counter (q,clk,clr,up_down);

inputclk, clr, up_down;

output[2:0]q;

reg[2:0]temp;

always@(posedgeclk or posedgeclr)

begin

if(clr)
temp=3’b000;

else
if(up_down)

temp=temp+1’b1;

else

temp=temp-1’b1;

end

assign q=temp;

endmodule

3-BIT SYNCHRONOUS UP/DOWN COUNTER OUTPUT:

RESULT:

Thus the Program of 3-bit synchronous up/down counterwas designed and simulated using

Verilog HDL and also implemented in FPGA Kit.

Expt No: 7 4-BIT ASYNCHRONOUS UP/DOWN COUNTER

Date:

AIM:

To design and simulate 4-Bit Asynchronous Up/Down Counter Using HDLand also
implement in FPGA Kit.

APPARATUS REQUIRED:

 PC

 Xilinx software

 FPGA(Spartan 3E) Kit

 PROCEDURE:

19. Start the Xilinx ISE by using start→ program file → Xilinx ISE → Project navigator

20. File → New Project

21. Enter the project name and location then click next

22. select the Device and other category and click next twice and finish

23. Click on the symbol of FPGA device and then right click → click on new source

24. Select the Verilog Module and give the file name → click next and define ports → click

next and finish

25. Writing the behavioral verilog code in verilog Editor

26. Run the Check syntax → process window → synthesize → double click check syntax and

remove errors, if present, with proper syntax & coding.

27. synthesis your design, from the source window select, Synthesis/Implementation from the

window Now double click the synthesis →XSt

28. After the HDL synthesis phase of the synthesis process, you can display a schematic

representation of your synthesized source file. This schematic shows a representation of

the pre-optimized design in terms of generic symbols, such as adders, multipliers,

counters, Ann gates and OR gates → double click View RTL schematic.

29. After Synthesis you assign the Pin Value for your design so, → double click the Assign

Package Pins

30. Enter the Pin value for your input and output signals. If you want see your Pin

assignment in FPGA zoom in Architecture View or Package View

31. You see the Pins in FPGA. Save file as XST Default click ok and close the window

32. Double Click Implementation Design

33. Right click the Generate Programming file→select properties and then select the start-up

options→change the clock into JTAG clock, then click apply and ok.

34. Double click the Generate Programming file.

35. Double click Configure Device→click finish →select the bit file and then click ok

36. Right click Xilinx Device→clickProgram→ok.

 4-bit Asynchronous up/down counter using HDL

CIRCUIT DIAGRAM:

PROGRAM

moduleddfsfd (

Clk,

reset,

UpOrDown, //high for UP counter and low for Down counter

 Count

);

inputClk,reset,UpOrDown;

output [3 : 0] Count;

reg [3 : 0] Count = 0; //input ports and their sizes

always @(posedge(Clk) or posedge(reset))

 //output ports and their size

begin

if(reset == 1)

 Count <= 0;

else

if(UpOrDown == 1) //Up mode selected

if(Count == 15)

 Count <= 0;

else

 Count <= Count + 1; //Incremend Counter

else//Down mode selected

if(Count == 0)

 Count <= 15;

else

 Count <= Count - 1; //Decrement counter

end

//Internal variables

endmodule

4-BIT ASYNCHRONOUS UP/DOWN COUNTEROUTPUT:

RESULT:

Thus the Program of 4-bit Asynchronous up/down counterwas designed and simulated using

Verilog HDL and also implemented in FPGA Kit.

Expt No: 8

Date: CMOS NAND, NOR GATE AND FLIPFLOP

AIM:

To design and simulate CMOSinverter , 2-input NAND, NOR gate, Flipflopand also

automaticlayout generationusing microwind.
APPARATUS REQUIRED:

 PC

 Microwind

 Dsch 03

 Mw 03

PROCEDURE:

 Open the dsch03 and design a circuit by using symbol library.

 After the commend circuits go to file and save the design and close the dsch3

 Next open the microwind 3 and go to the compile the verilog file then compile and were

to editor.

CIRCUIT FOR CMOS INVERTER:

SIMULATIONOUTPUT:

LAYOUT GENERATION:

OUTPUT FOR TIMING ANALYSIS:

CIRCUIT DIAGRAM FOR CMOS NAND GATE:

CMOS NAND GATE OUTPUT:

CMOS NOR GATE:

NOR GATE OUTPUT:

D-FLIPFLOP:

SIMULATION OF D-FLIPFLOP:

LAYOUT OF D-FLIPFLOP:

NAND GATE LAYOUT:

NAND GATE TIMING ANALYSIS:

RESULT:

Thus the CMOS 2-input NAND, NOR gate, Flip-flopwas designed and simulated and also

automatic layout generation completed using micro wind.

Expt No: 9

Date: SYNCHRONOUS COUNTER

AIM:

To design and simulate 4-bit Synchronous Counter and also automatic layout generation

usingmicrowind.
APPARATUS REQUIRED:

 PC

 Microwind

 Dsch 03

 Mw 03

PROCEDURE:

 Open the dsch03 and design a circuit by using symbol library.

 After the commend circuits go to file and save the design and close the dsch3.

 Next open the micro wind 3 and go to the compile the Verilog file then compile and were

to editor.

CIRCUIT DIAGRAM:

SIMULATION OUTPUT:

Layout of synchronous counter:

RESULT:

Thus the 4-bit Synchronous Counter was designed and simulated and also automatic layout

generation completed using microwind.

EXPT NO: 10

DATE: DIFFERENTIAL AMPLIFIER

OBJECTIVE

To design and simulate the differential amplifier circuits using Tanner EDA tool.

SOFTWARE USED

Tanner EDA Tools

(i) S-Edit

(ii) T-Edit

(iii) W-Edit

THEORY:

Differential amplifier:

A differential amplifier is a type of electronic amplifier that multiplies the difference between

two inputs by some constant factor (the differential gain). Many electronic devices use differential

amplifiers internally. The output of an ideal differential amplifier is given by:

Vout= Ad(Vin1 – Vin2), Where Vin1 and Vin2 are the input voltages and Ad is the differential gain. In

practice, however, the gain is not quite equal, for the two inputs. This means that if Vin1 and Vin2 are

equal, the output will not be zero, as it would be in the ideal case. A more realistic expression for the

output of a differential amplifier thus includes a second term. Vout= (Ad(Vin1 – Vin2) + Ac(Vin1 + Vin2))/2

Ac is called the common-mode gain of the amplifier. As differential amplifiers are often used

when it is desired to null out noise or bias-voltages that appear at both inputs, a low common-mode gain

is usually considered good. The common-mode rejection ratio, usually defined as the ratio between

differential-mode gain and common-mode gain, indicates the ability of the amplifier to accurately cancel

voltages that are common to both inputs. Common-mode rejection ratio (CMRR): CMRR= Ad / Ac

The input common-mode range (ICMR) is the range of common-mode voltages over which the

differential amplifier continues to sense and amplify the difference signal with the same gain.

Typically, ICMR is defined by the common-mode voltage range over which all MOSFETS remain in the

saturation region..

PROCEDURE:

1. Open a schematic editor(S-Edit) from the Tanner EDA Tools.

2. Select the required components from the symbol browser and design given circuit using

S-Edit.

3. Write the program in T-Edit and run the simulation to simulate the given program to view

the result.

4. Output waveform is viewed in the waveform viewer.

CIRCUIT DIAGRAM:

SCHEMATIC DIAGRAM:

COMMON MODE OUTPUT:

DIFFERENTIAL MODE OUTPUT:

OUTPUT:

RESULT:

Thus theDifferential Amplifier was designed and simulated using Tanner EDA Tools.

Expt No: 11

Date: DESIGN AND SIMULATE THE ANALYSIS OF SOURCE FOLLOWERS

AIM:

Todesign and simulate the analysis of source followersusing Tanner EDA T-spice (S-Edit).

APPARATUS REQUIRED:

 PC

 Tanner EDA

 T-spice

 S-Edit

PROCEDURE FOR TANNER TOOLS:

STEP1:open s-edit window

 STEP2:go to file- > new- > new design

STEP3:go to cell- > new view

STEP4:add libraries file to the new cell

STEP5:Instance the devices by using appropriate library files

STEP6:save the design & setup the simulation

STEP7:run design &observe waveforms

STEP8:observe the input & output waveform by given appropriate inputs.

CIRCUIT DESCRIPTION:

 Common-Source amplifier is one of the three basic single stage field effect transistor

topologies typically used as a voltage or trans-conductance amplifier. As a trans-conductance

amplifier, the input voltage is seen as modulating the current going to the load. As a voltage

amplifier, input voltage modulates the amount of current flowing through the FET, changing the

voltage across the output resistance according to Ohms law. Because of its high input-

impedance, relatively high gain, low noise, speed and simplicity, common source amplifiers find

different applications from sensor signal amplifications to RF noise amplification.

SPECIFICATIONS:

L = 250nm; Tox = 5.7e-9; Vth = 0.388582; Un = 304.684e-4;

Vs = 200mV (max voltage drop across degeneration resistor)

Gain = 10dB; Rin = 50K; Power Budget = 5mW; Kn = 0.1876e-3; Vdd = 2.5V

Fl = 1Khz; Fh = 3Ghz; NF = 3dB; ᵞ = 0.8

DESIGNED VALUES:

R1= 149.04K; R2= 76.23K

W = 21.321um; Rd = 3188K

Cin = 3.184uF; Cout = 58.89nF

CIRCUIT DIAGRAM:

T-SPICE NETLIST:

SPICE export by: SEDIT 13.00

* Export time: Tue May 13 12:23:36 2014

* Design: opi

* Cell: Cell0

* View: view0

* Export as: top-level cell

* Export mode: hierarchical

* Exclude .model: no

* Exclude .end: no

* Expand paths: yes

* Wrap lines: no

* Root path: C:\Documents and Settings\ece\My Documents\Tanner EDA\Tanner Tools

v13.0\Libraries\All\opi

* Exclude global pins: no

* Control property name: SPICE

********* Simulation Settings - General section *********

.lib "C:\Documents and Settings\ece\My Documents\Tanner EDA\Tanner Tools

v13.0\Libraries\Models\Generic_025.lib"tt

********* Simulation Settings - Parameters and SPICE Options *********

*-------- Devices: SPICE.ORDER > 0 --------

CCapacitor_1 In N_2 3.184u

CCapacitor_2 N_1 Out 58.89f

RResistor_1 Vdd N_1 R=3.188meg

RResistor_2 Vdd N_2 R=149.04k

RResistor_3 N_2 Gnd R=76.23k

RResistor_4 N_3 Gnd R=100

RResistor_5 Out Gnd R=1k

MNMOS_1 N_1 N_2 N_3 0 NMOS W=2.5u L=250n AS=2.25p PS=6.8u AD=2.25p PD=6.8u

VVoltageSource_1 VddGnd DC 5

VVoltageSource_2 In Gnd SFFM(2.5 500m 1meg 0 10k)

.PRINT TRAN V(In)

.PRINT TRAN V(Out)

********* Simulation Settings - Analysis section *********

.tran 10ns 1000ns

********* Simulation Settings - Additional SPICE commands *********

.end

OUTPUT WAVEFORM:

RESULT:

 Thus the analysis of source followers was designed and simulated using Tanner EDA Tools.

EX.NO: 12

DATE: CMOS INVERTING AMPLIFIER

AIM:

To design and simulate a single stage operational amplifiers using Tanner EDA tools.

.

APPARATUS REQUIRED:

 Tanner EDA Tools

 S-Edit

 PC

PROCEDURE FOR TANNER TOOLS:

STEP1: open s-edit window

 STEP2: go to file- > new- > new design

STEP3: go to cell- > new view

STEP4: add libraries file to the new cell

STEP5: instance the devices by using appropriate library files

STEP6: save the design & setup the simulation

STEP7: run design &observe waveforms

STEP8: observe the input & output waveform by given appropriate inputs.

THEORY:

The single stage operational amplifier produces an output with a reduced voltage swing.

A two stage operational amplifier increases the voltage swing. The differential amplifier

constitutes the first stage of the two stage operational amplifier. The differential input signal

applied across the two terminals will be amplified according to the gain of the differential stage.

The current mirror topology performs the differential to single-ended conversion of the input

signal and also, the load helps with the common mode rejection ratio. The second stage is a

current sink load inverter (common source) which provides additional gain.

SPECIFICATIONS:

𝑉𝐷𝐷 = 2.5𝑉,,𝑉𝑆𝑆 = −2.5𝑉,,𝐺𝐵 = 0.5𝑉,,𝐼𝐶𝑀𝑅 = −0.5 𝑡𝑜 2,,𝐶𝐿 = 4.5𝑓𝐹,|𝑉𝑇𝑝 = 0.42|, 𝑉𝑇𝑛 =

0.399,𝐾𝑛 = 302 ∗ 10−6, 𝐾𝑝 = 65.77 ∗ 10−6

SINGLE STAGE OPERATIONAL AMPLIFIER:

SCHEMATIC:

T-SPICE Netlist:

* SPICE export by: S-Edit 15.00

* Export time: Fri Feb 28 02:26:05 2014

* Design: OPAMP4_SINGLE

* Cell: Cell0

* View: view0

* Export as: top-level cell

* Export mode: hierarchical

* Exclude empty cells: yes

* Exclude .model: no

* Exclude .end: no

* Exclude simulator commands: no

* Expand paths: yes

* Wrap lines: no

* Root path: C:\software\tanner\OPAMP4_SINGLE

* Exclude global pins: no

* Control property name: SPICE

********* Simulation Settings - General Section *********

.include"C:\software\tanner\LibraryfilesforTannerEDAV15\Libraries\Libraries\Models\ptm_180nm.md"

VDD VDD VSS 2.5

VBiasVBias VSS 1

*-------- Devices With SPICE.ORDER >0.0 --------

***** Top Level *****

RResistor_1 N_2 Out R=100k $ $x=6000 $y=4614 $w=600 $h=149

MNMOS_1 N_1 In- N_4 0 NMOS W=5u L=180n AS=4.5p PS=11.8u AD=4.5p PD=11.8u $ $x=2800
$y=3900 $w=400 $h=600

MNMOS_2 N_2 In+ N_4 0 NMOS W=5u L=180n AS=4.5p PS=11.8u AD=4.5p PD=11.8u $ $x=5200
$y=3900 $w=400 $h=600

MNMOS_3 N_4 VBiasVss 0 NMOS W=34u L=180n AS=30.6p PS=69.8u AD=30.6p PD=69.8u $
$x=4000 $y=2900 $w=400 $h=600

MPMOS_1 N_1 N_1VddVdd PMOS W=720n L=180n AS=648f PS=3.24u AD=648f PD=3.24u $
$x=2800 $y=5400 $w=400 $h=600

MPMOS_2 N_2 N_1 VddVdd PMOS W=720n L=180n AS=648f PS=3.24u AD=648f PD=3.24u $
$x=5200 $y=5400 $w=400 $h=600

.MEASURE AC AC_Measure_Gain_1 MAX vdb(Out) ON $ $x=7150 $y=3800 $w=1500 $h=200

********* Simulation Settings - Analysis Section *********

VIn+ In+ GND AC 1 SIN (0 2 80K)

VIn- In- GND AC 1 SIN (0 1.5 80K)

*.op

*VIn+ In+ GND PULSE (0 1 0 0 0 1n 2n)

*VIn- In- GND PULSE (0 0.5 0 0 0 1n 2n)

********* Simulation Settings - Additional SPICE Commands *********

.tran 50p 100u

.print tranv(In+) v(In-)v(Out)

.ac dec 10 100 10G .print ac vdb(Out) vp(Out).end

RESULT:

 Thus the single stage operational amplifier was designed and simulated using tanner

EDA.

	EC3561-VLSI LABORATORY
	18. Right click Xilinx Device→clickProgram→ok.
	RTL-SCHEMATIC:
	PROGRAM:
	module adder(sum, cout, a, b, cin);
	input cin;
	input [7:0] a;
	input [7:0] b;
	output [7:0] sum;
	output cout;
	wire [8:0] tmp;
	assigntmp = a + b + cin;
	assign sum = tmp [7:0];
	assigncout = tmp [8];
	endmodule
	PROGRAM: (1)
	modulemulti(y,a,b);
	input [7:0]a;
	input [7:0]b;
	output [15:0]y;
	assign y=a*b;
	endmodule (1)
	OUTPUT:

	THEORY
	18. Right click Xilinx Device→clickProgram→ok.
	The Difference between Memory, RAM and Storage:
	18. Right click Xilinx Device→clickProgram→ok.
	CIRCUIT DIAGRAM:
	18. Right click Xilinx Device→clickProgram→ok. (1)
	18. Right click Xilinx Device→clickProgram→ok. (2)
	36. Right click Xilinx Device→clickProgram→ok.

